Evolutionary dynamics and preferential expression of homeologous 18S-5.8S-26S nuclear ribosomal genes in natural and artificial glycine allopolyploids.
نویسندگان
چکیده
Polyploidy is an important evolutionary process in plants, but much remains to be learned about the evolution of gene expression in polyploids. Evolution and expression of the 18S-5.8S-26S ribosomal gene family was investigated at homeologous loci in the Glycine subgenus Glycine perennial soybean polyploid complex, which consists of several diploid genomes that have formed allopolyploids in various combinations, often recurrently. A semiquantitative PCR method targeting the internal transcribed spacer (ITS) of the 18S-5.8S-26S nuclear ribosomal DNA (nrDNA) was used to survey the ratio between homeologous repeats in polyploid genomes and to test for preferential expression of homeologous nrDNA loci. Most natural polyploids possess one predominant nrDNA homeolog in their genome. Analysis of F2 segregation in an artificial cross suggested that in some plants, most or all repeats at one homeologous locus have been lost, whereas in other plants two loci remain, but both have been homogenized by concerted evolution. In most natural allopolyploids harboring a relatively balanced ratio of homeologs, one homeolog was expressed preferentially, but in the majority of plants, low levels of transcription could be detected from the other homeolog. Individuals within some tetraploid taxa varied as to which homeolog was expressed preferentially. In some plants, the degree of preferential expression also varied among tissues. Preferential expression was absent in synthetic polyploids and in some artificial diploid hybrids, suggesting that nucleolar dominance is not necessarily a direct result of hybridization or polyploidization. The establishment of preferential expression in Glycine allopolyploids appears to be either stochastic within lineages or genotype specific.
منابع مشابه
Sequence arrangement of the rRNA genes of the dipteran Sarcophaga bullata.
Velocity sedimentation studies of RNA of Sarcophaga bullata show that the major rRNA species have sedimentation values of 26S and 18S. Analysis of the rRNA under denaturing conditions indicates that there is a hidden break centrally located in the 26S rRNA species. Saturation hybridization studies using total genomic DNA and rRNA show that 0.08% of the nuclear DNA is occupied by rRNA coding seq...
متن کاملPhysical mapping of 5S and 18S-5.8S-26S RNA gene families in polyploid series of Cenchrus ciliaris Linnaeus, 1771 (Poaceae)
The Buffelgrass (Cenchrus ciliaris L., Poaceae) is one of the most important pasturage grasses due to its high productivity and good forage qualities. This species possess a high adaptability to bioclimatic constraints of arid zones and may be used for the restoration of degraded arid ecosystems. Tunisian populations present three ploidy levels (4x, 5x and 6x) with a basic chromosome number x=9...
متن کاملStructural organization of the two main rDNA size classes of Ascaris lumbricoides.
The two main rDNA size classes in the genome of Ascaris lumbricoides consist of 8.8 kb and 8.4 kb long repeating units present in a quantitative ratio of roughly 10:1. They both contain the genes coding for 18 , 5.8S and 26S ribosomal RNAs. The length heterogeneity is due to a 450 bp long spacer region localized in the longer repeating unit which begins 870 bp upstream of the 5'-end 18S gene. A...
متن کاملSequence and secondary structure of Drosophila melanogaster 5.8S and 2S rRNAs and of the processing site between them.
Drosophila melanogaster 5.8S and 2S rRNAs were end-labeled with 32p at either the 5' or 3' end and were sequenced. 5.8S rRNA is 123 nucleotides long and homologous to the 5' part of sequenced 5.8S molecules from other species. 2S rRNA is 30 nucleotides long and homologous to the 3' part of other 5.8S molecules. The 3' end of the 5.8S molecule is able to base-pair with the 5' end of the 2S rRNA ...
متن کاملNuclear ribosomal DNA phylogeny and its implications for evolutionary trends in Mexican Bursera (Burseraceae).
The genus Bursera (Burseraceae) is one of the most diversified and abundant groups of plants of the tropical dry forests of Mexico. In order to provide a basis for better understanding of its evolutionary biology, we reconstructed a phylogeny of 57 species and varieties using the nucleotide sequences of the internal transcribed spacer regions (ITS1 and ITS2) of 18S-26S and the 5.8S coding regio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 21 7 شماره
صفحات -
تاریخ انتشار 2004